

1. Application

The KSB HDB series is recommended for boiler feedwater and power plants, production under pressure at pressure and descaling.

2. General Description

Horizontal, multistage, with radially split suction, discharge and stage casings. The sealing between the stage casings is metallic and the union of the components with tie bolts keeps the junction of metallic surfaces under pressure. The stage casings and tie bolts are covered with a jacket.

The pump is supported at the shaft centerline.

3. Description

4. Operation Data

Sizes	- DN 40 up to 150
Flow	- up to 700 m ³ /h
Head	- up to 2.500 m
Temperature	- up to 230°C
Speed	- up to 5.500 rpm
Final pressure	- up to 230 bar

Legal information/Copyright

Type Series Booklet HDB

All rights reserved. The contents provided herein must neither be distributed, copied, reproduced, edited or processed for any other purpose, nor otherwise transmitted, published or made available to a third party without the manufacturer's express written consent.

Subject to technical modification without prior notice.

© KSB Brasil Ltda., Várzea Paulista 07/05/2018

KSB HDB

Index

1.	Application	1
2.	General Description	1
3.	Designation	1
4.	Operation Data	1
5.	Selection chart – 60 Hz	5
6.	Selection chart – 50 Hz	6
7.	General Data	7
8.	General Description	8
	8.1 Casing	8
	8.2 Impeller	8
	8.3 Shaft	8
	8.4 Shaft sealing	8
	8.5 Axial thrust balance	8
	8.5.1 Description and principle of operation of the axial thrust balance device	8
	8.6 Bearings	10
	8.7 Accessories (optional)	10
9.	Technical Data	11
	9.1 Discharge flow for axial thrust balance	11
	9.2 Pressure and temperature limits	12
	9.3 Speed limits according to impeller diameter and material	13
	9.4 Critical speeds	13
	9.5 Speed regulation	14
	9.6 NPSH required	15
10	. Design	16
	10.1 Assembly of pump set and work environment	16
	10.2 Casing	17
	10.3 Impellers	17
	10.4 Shaft	17
	10.5 Bearings and Lubrication Types	17
	10.5.1 Bearings	17
	10.5.1 Axial thrust balance device	19
	10.5.3 Lubrication types	23
	10.5.3.1 Execution with plain bearings and forced feed lubrication	23
	10.6 Shaft sealing	26
	10.6.1 Packing	26
	10.6.2 Mechanical Seal	27
	10.7 Cooling	28
	10.7.1 Shaft sealing by gland packing	28
	10.7.1.1 Pumped médium temperature between 105°C and 150°C	28
	10.7.2 Shaft sealing by mechanical seal	29
	10.7.2.1 With seal flushing plan (-5°C up to +70°C)	29
	10.7.2.2 Without seal flushing plan and seal chamber cooling (71°C up to 120°C)	29
	10.7.2.3 With seal chambers cooling and mechanical seals in parallel (121°C up to 180°C)	29
	10.7.2.4 For ambient temperature > 45°C and pumped medium temperature > 150°C up to	
	180°C	30
	10.7.2.5 With seal flushing plan to a heat exchanger for each mechanical seal and seal chamber	
	cooling	30
	10.8 Heating chamber	32
	10.9 Inertia	32

KSB HDB

10.10 Drive	
10.11 Couplings	
10.11.1 Coupling guard	
10.11.2 Baseplates	
11. Materials	
11.1 Directives for materials selection for boiler feedwater pumps	
11.1.1 General Rules	
12. Material variants	
12.1 Clearances	
13. Forces e Moments	
13.1 Center of gravity position	
14. Spare parts	
15. Dimensions	
16. Cross-section drawing and Parts list	
16.1 Sizes 40 and 50	
16.2 Sizes 65, 80 and 100	
16.3 Sizes 125 and 150	
16.4 Special features	
16.4.1 Blind stage	
16.4.2 Stage casing with extraction	
16.4.2.1 Material variants for threaded and welded extraction	
16.4.3 Lubricating oil pump installed on the pump shaft	
16.4.4 Minimum flow valve installation	
16.4.5 Strainers	
16.4.6 Special tools	
16.4.7 Tools	
17. Characteristic curves	

5. Selection chart – 60 Hz

Speed: 3550 rpm

6. Selection chart – 50 Hz

Speed 2900 rpm

7. Constructive Data

Pump Size			4	0	5	0	6	5	8	0		100		1:	25	1	50	
Suction maximum pre	ssure (bar)				30 25													
Delivery maximum	Material	variant	01	160														
pressure (bar) 02		02		230														
Max differential pressure per stage	Material	variant	01 and 02					2	6						2	28	35	5.5
(bar)					60													
Max pressure Hydrostatic test	Other	Material	01					23	30							20	00	
(bar)	Hydrostatic test Other variant _ (bar) stages		02		275													
Minimum flow										0.5 x	Qopt							
Maximum flow										1.15 x	Qopt.							
Min/Max temperature	(°C)									See it	em 8.2							
Speed direction								Drivin	a on suct	ion side: c	lockwise	(viewe	d from	drive	side)			
		Suction		300	# RF				ANS	I B16.5 - 1	50 # RF	/ ANSI	B16.5	- 300	# RF			
Flanges ANSI B16.5(1)	Delivery						ANSI	B16.5 - 9	00 # RF /	ANSI B1	6 5 - 1!	500 #1	RF				
Plain bearings DxL (m	nm)	Donitory			35	x50		7	45	x60	/		50x60		65	x75	75	x85
Oil volume per plain h	earing (Its)						0	4	10.				0.5		0	7	1	3
Oil flow for forced fee	d lubrication	(I/s) per be:	aring		0.0)33			0	05			0.066		0	1	0 '	133
Additional oil quantity device lubrication (I/s)	required for	axial thrust	balance		0.0		0	.1	0.				0.133			0.1	166	
Axial thrust balance device, execution with roller bearings bearings		ow angular- oller		3309-C3 3310-C3														
	Oil volume		е	0.2				0.4										
Max allowable P/n.		SAE 104	5	0.0		0635		0.1405			0.1833		0.6000		0.9	500		
shaft (kW/rpm) – Material	Material AISI 6F3			0.1022			0.1714			0.2415		0.6210		0.9780				
В	earing type (2)		GR	GD	GR	GD	GR	GD	GR	GD	GR	G cou	iD pling _≤	GR	GD	GR	GD
			3	-	-	-	-	-	-	-	-	-	50kg -	50kg -	3000	3600	3000	3600
			4	- 3600	- 5500	3600	5500 5500	3600	5000 5000	3600	4500 4500	3000	3000	4500	3000	3600	3000	3600
			6	3600	5500	3600	5500	3600	5000	3600	4500	3000	3000	4500	3000	3600	3000	3600
			7	3600 3600	5500 5500	3600 3600	5500 5500	3600 3600	5000 5000	3600 3600	4500 4500	3000	3000	4500	3000	3600 3600	3000	3600 3600
			9	3600	5500	3600	5500	3600	5000	3600	4500	3000	3000	4400	3000	3600	-	-
Maximum speed per			10	3600	5500 5500	3600	5500 5500	3600	5000 4800	3600	4300 4250	3000	3000	4200	3000	3600	-	-
stages number (3)			12	3600	5500	3600	5300	3600	4700	3600	4200	-	-	-	-	-	-	-
			13	3600	5500	3600	5100 4900	3600	4600	3600	4100	-	-	-	-	-	-	-
			15	3600	4800	3600	4700	3600	4300	-	-	-	-	-	-	-	-	-
			16	3600	4400	-	-	-	-	-	-	-	-	-	-	-	-	-
Minimum number of s	tages	1 st etage		0.00	5	0.01	210	4		180			5	0.26	5455	3	000	
Inertia moments J=GI with water	D ² /4 (Kgm ²)	Each add	itional	0.00)415	0.00)750	0.02	575	0.03	110	0	.0441	5	0.23	4525 1525	0.26	6000 6250
			3		-		-		- 7/	F	SA		-		12	200	17	35
			5	2	- 14	30	00	4)1	60)5		830		13	100	20	165
6 7 8 9 9		6	22	28	32	21	42	28	66	64 87		880		15	500	22	30	
		2	56	36	53	48	32	087 728			980		17	00	25	60		
		9	2	70	38	34	50)9	769			1030		18	300		-	
Pump final weight per	stages, in k	g	10	29	98	40	26	56	50 53	85	51		1130		18	-		-
			12	3	12	44	17	59	91	89	92		-			-		-
			13	32	<u>∠o</u> 40	46	39	64	10 15	93	ა <u>.</u>		-			-		-
			15	3	54	51	10	6	72	-		1	-			-		-
			16 17	30	32							<u> </u>	-			-		-

Table 1 – Technical data

Pressure shall not be lower than 25% of pressure at operation point, neither lower than 15 bars

(1) (2) Other flanges standards, upon request.

GR - plain bearing types: GR - plain bearing swith lubrication by oil ring GD – plain bearing with forced feed lubrication Speed can be exceeded by 10% for a short period of time, considering the allowable pressure limitations according to figure 3. (3)

8. General Description

8.1 Casing

Top suction and discharge flanges. Flanges on the stage casing for extraction of one or more partial flows of feedwater for use elsewhere.

8.2 Impeller

Radial, closed, single suction impeller

8.3 Shaft

Pump shaft is provided with shaft protection sleeve and spacer sleeve.

8.4 Shaft sealing

The shaft is sealed by packing. Option for shaft sealing by mechanical seal is available. Cooling chamber is necessary for temperatures above 105°C.

Fig.1 - Shaft sealing by gasket with cooling chamber

8.5 Axial thrust balance

Axial thrust balance by balance disc, with balance line piping towards the suction casing or suction tank.

8.5.1 Description and principle of operation of the axial thrust balance device

The pumped medium flows through the suction casing (106) to the first impeller. It leaves the impeller (230), pressurizes its shoulders and flows to the diffuser (171.1) and from diffuser to the next impeller inlet.

This process is repeated on each stage, while the pressure is increased by an equal value successively, i.e. by the capacity of head of the stage.

From the last impeller, the medium flows to the balance disc chamber and to last stage diffuser (171.2). From the last stage diffuser to the pressure casing and to the discharge piping

An axial force A, which is caused by the differential pressure from the area between DSP (wear ring inner diameter) and e Da (stage sleeve diameter) acts on each impeller. See Figure 3. This axial thrust tends to displace the impeller to pump suction side.

Fig.2 - Shaft sealing by mechanical seal

Fig.3 - Rotor axial thrust

A specific balance device is necessary to balance the axial thrust. This device consists of a balance disc (601), balance disc seat (602) and balance line piping, acting through the radial clearance between the throttle bushing of the balance disc seat (602) and the spacer sleeve (525.2) - clearance "B" – and the axial clearance between disc and balance disc seat – clearance "C".

For example, if clearance "C" is very small, roughly the pump final pressure will act on disc chamber, displacing the rotor to the discharge side, and clearance C will increase. If the clearance C is too big, there will be a pressure relief on the disc chamber, reducing the axial thrust and returning the rotor to the suction side. During the operation, an average clearance will be set and pump will be axially balanced. See Figure 4.

Fig.4 – Axial thrust balance device

On the back of the balance disc, between the discharge casing (107) and gland packing (451) there is a chamber where the balance piping is installed and can be returned to suction casing or tank, depending on specific conditions. See Figures 6 and 10.

Fig.5 – Axial forces on the balance disc

Fig.6 – Balance line piping sketch with return to the suction tank

<u>Caution</u>: Minimum differential pressure to displace disc is 15 bar. For lower values, the clearance "C" in Figure 4 will not exist and the balance device will be violently worn by friction.

8.6 Bearings

The bearings are installed in two flanged bearing brackets on both ends of the pump. Bearings can be rolling bearings, or plain bearings with lubrication by oil rings or forced feed lubrication.

8.7 Accessories (optional)

8.7.1 Drive

Direct drive by flexible coupling or indirect drive by means of gearbox, electric motor, turbine, diesel motor, etc.

8.7.2 Coupling

Flexible coupling sleeve to allow shaft axial displacement.

8.7.3 Coupling guard KSB standard

8.7.4 Baseplate KSB standard of steel

8.7.5 Suction strainer Suction strainer must always be installed on the suction piping in order to protect the pump.

8.7.6 Temperature sensors (PT100)

The temperature sensors are installed on the bearings to monitor their temperature

Fig.7 – Temperature sensors positioning

8.7.7 Vibration sensors

They can be installed on the bearings with features depending of customer's specification and bearing type.

Fig.8 – Vibration sensors position

9 Technical Data

9.1 Discharge flow for axial thrust balance

The flows of discharge Q_E are average values resulting from various measurements shown on Figure 9. These flows refer to a pump speed n = 3550 rpm, 60 Hz and may be linearly transformed to other speeds.

The discharge flow returns to the pump suction flange or to the boiler which feeds the pump, according to the flow temperature and the number of stages (see Figure 10). Conditions: Q min = 20% de $Q\eta_{opt}$ and NPSHavailable \cong NPSHrequired.

Figure 10 – Values for flow return

The balance disc liquid piping requires sizing according to table below:

Size	Diameter of balance disc liquid piping for pipe length < 10 m	Diameter of balance disc liquid piping for pipe length \ge 10 m
40 to 65	DN 25	DN 40
80 to 150	DN 40	DN 50

9.2 Pressure and temperature limits

Figure 11 sets pressure limitations valid for pumps whose temperatures differences between operating condition of pump and medium are small, for example.

Figure 12 – Pressure and temperature limits (cold start-up)

9.3 Speed limits according to impeller diameter and material

For sizes 125 and 150 only chrome steel impellers can be used

9.4 Critical speeds

Figure 14 shows critical speeds, which are defined according to hydraulic features.

Figure 14 – Critical speeds according to the number of stages

9.5 Speed regulation

For driving machines with speed regulation (turbine, reducer, frequency inverter, etc.) there will be other values for manometric height, shown on chart in Figure 15.

For example, if pump speed corresponds to 75% of nominal speed, when pump works with ³/₄ of load, we receive only 56% of pump manometric height, compared to 100% of load and nominal speed.

Figure 15 – Speed regulation

9.6 NPSH required

In order to avoid cavitation, the NPSH available shall always be higher than NPSH required (safety margin and tolerances for construction and dimensions are not considered on the catalogues).

The graph on Figure 16 shows the relations between factors.

For constant pressure of the water in suction tank, the safety margin for Qmax shall be of at least 1 m.

In case the strainer is installed inside the suction piping, the loss on the strainer is approximately 2 m for maximum Q, assuming that free area of the strainer is three times bigger than free suction piping area. For detailed information about the losses on the suction strainer, please contact KSB.

If HDB pump receives inlet pressure required by a pre-pump (BOOSTER type), the pressure provided by this pre-pump shall be considered to determine the NPSH required of HDB.

NPSH req.	=	Required NPSH [m]
NPSH avail.	=	Available NPSH [m]
Hz geo	=	Geodesic height of pump flow inlet [m]
Hvstot	=	Losses due to friction inside inlet piping, including strainer losses [m]
Hvsl	=	Losses at boiler outlet and piping up to pump, without strainer losses [m]
Hvss	=	Strainer losses [m]
Hx	=	Safety heights
В	=	Boiler feedwater pump
Р	=	Pump
S	=	Strainer

10 Design

High pressure horizontal multistage centrifugal pump.

The casings of various stages and tie bolts are installed inside a cover. The suction and discharge casings have top flanges. The pump feet are supported on shaft centerline position to avoid thermal expansion.

10.1Assembly of set and work environment

In most cases pumps and motors including other accessories are installed on a common baseplate on most of the cases, and inside closed areas.

For hot water pumps it is possible to pre warm the pump by the flow during operation (see figure 17).

It is possible to install heating coil between the pump casing and baseplate outdoor during low temperature period on cold water pumps installed (figure 18).

Figure 18 – Pump with heating device

10.1 Casing

HDB pumps are provided with suction and stage casings and gland installed radially to the shaft.

The casings are assembled with metal-to-metal joints (without sealing gasket) to avoid leakage.

Diffusers are installed inside the stages and pressure casings. Wear rings are installed inside suction and stage casings. Standardized pressure classes according to ANSI standard, other standards may be applied upon request.

Pump Size	Suction	Pressure casing
40	ANSI B16.5 - 300 # RF	
50		
65		ANSI R16.5 000 # PE
80	ANSI B16.5 - 150 # RF	
100	ANSI B16.5 - 300 # RF	ANSI B16.5 - 1500 # RF
125		
150		

Table 2 – Flange nominal pressure, according to ANSI standard.

For flanges connections, see item Dimensions.

10.2 Impellers

HDB pumps are provided with radial impellers, with clockwise direction and single suction. Impellers are fastened to shaft with keys; the distance between the impellers is made through stages spacer sleeve, and spacer sleeves on suction side and discharge side.

10.3 Shaft

Made from a single piece in different materials, shafts are protected by shaft protection sleeves and spacer sleeves, according to specified variant. In standard variant, on shell and impellers fastening regions, it is provided with chrome surface treatment.1

Shaft mechanical strength depends on shaft and coupling sleeve material.

Remark: Couplings that do not allow axial flotation (E.g.: Steelflex from "Falk") do not apply to this pump type, due to rotor axial displacement during start-up.

10.4 Bearings and Lubrication Types

10.4.1 Bearings

HDB pumps bearings do not need to handle axial forces, as these forces are balanced by the hydraulic balance thrust device.

For bearings sizes and oil quantity on bearings housings, see Tables 1, 3, 4, 5 and 6.

The maximum bearings housing temperature considered is 45°C above ambient temperature, and shall not exceed 80°C. For applications with ambient temperatures above 45°C and pumped water temperature from 150°C to 200°C it is necessary to cool the bearing housing when plain bearings are used, see figure 20. It is not necessary to cool the bearings if the bearings lubrication is by forced feed lubrication.

For pumped fluid temperature above 200 °C, forced feed lubrication is required.

Plain bearings clearance is approximately 0.001 x shaft Ø

Pump Size	Plain bearings inner \emptyset x length (mm)	Oil volume per bearing (I)		
40 and 50	35 x 50	0.4		
65	45 x 60	0.4		
80	45 x 60	0.4		
100	50 x 60	0.5		
125	65 x 75	0.7		
150	75 x 85	1.3		

Table 3 – Pumps with plain bearings and lubrication by oil ring, without axial thrust device

Pump Size	Plain bearings internal Ø x length (mm)	Oil flow for radial bearing forced feed lubrication (l/sec)	Oil additional quantity when axial thrust device is used (l/sec)	
40 and 50	35 x 50	0.033	0.10	
65	45 x 60	0.050	0.10	
80	45 x 60	0.050	0.10	
100	50 x 60	0.066	0.133	
125	65 x 75	0.100	0.166	
150	75 x 85	0.133	0.166	

Table 4 – Pumps with plain bearings and forced feed lubrication

Pump Size	Axial thrust balance device, with roller bearings execution:					
	Angular-contact roller bearing	Oil volume for axial thrust balance device (I)				
40 and 50	3309-C 3	0.2				
65						
80						
100	3310-C 3	0.4				
125						
150						

Table 5 – Pumps with plain bearings and axial thrust balance device with roller bearing

When the pump is installed outdoors the bearings have extra protection by felt rings to avoid dust contamination. Oil level is constantly controlled by a constant level oiler.

Figure 19 – Plain bearings sealing for outdoors installation (standard execution)

Figure 20 – Bearing housing cooling

10.4.2 Axial thrust balance device

- 11 For speeds below 50% of nominal speed, with discharge pressure below 25% of pressure at operating point or below 15 bar, the axial thrust balance device (balance disc and balance disc seat) is roughly without any effect i.e. disc and balance disc seat would have metallic contact. In order to avoid the wear of these parts it is necessary to limit the pump speed to a minimum speed in case of automatic regulation. During start-up and shutdown it is unavoidable to cross the speed ranges mentioned above (for example more than one time a day in case of electric motor, or in case of turbine driven pump, when the turbine operates for a long time period of time in low speed) it is recommended to use a lift-off device.
- 12 The aim of this device is to avoid metallic contact between disc and balance disc seat and to balance axial hydraulic thrust which occurs in low speeds.
- 13 Depending on the pump size and speed there are two types of lift-off device i.e. execution with roller bearings (figures 21 and 22) and with segment bearings (figures 23 and 24). For plain bearings with forced feed lubrication the device shall be used as shown on figures 23 and 24. These executions require pressurized oil and consumption according to Table 8.

Figure 21 – Lift-off device with roller bearings for pumps with plain bearings for sizes 40 to 100

Figure 22 – Lift-off device with roller bearings for pumps with plain bearings for sizes 125 and 150

Fig. 23 – Lift-off device with forced feed lubrication for pumps with plain bearings for sizes 40 to 100

Fig. 24 – Lift-off device with forced feed lubrication for pumps with plain bearings for sizes 125 and 150

"

			Lift-off device	
Qty. of parts	Dantaa	Description	Execution with bearing	Execution with segment bearings
per pump	Part no.	Description	Fig. 21 and 22	Fig. 23 and 24
			Material	Material
1	145	Union part	SAE 1045	-
1	314	Thrust bearing	-	St/Lg Sn 80
1	320	Roller bearing	Steel	-
1	354	Thrust Bearing housing	A48 CL30	A48 CL35
1	361	Bearing end cover	A48 CL30	A48 CL35
1	384	Thrust bearing plate	-	AISI 420
1	388	Balance disc seat plate	-	St/Lg Sn 80
1	392	Bearing segment carrier	-	SAE 1045
1	400.5 ¹⁾	Gasket	Hydraulic Cardboard	Hydraulic Cardboard
1	400.6	Gasket	Hydraulic Cardboard	-
1	400.7	Gasket	Hydraulic Cardboard	Hydraulic Cardboard
2	420	Shaft seal ring	-	Steel/NB
1	505.2	Loose collar	AISI 420	-
1	507.2	Thrower	-	AISI 316
1	525.3	Spacer sleeve	AISI 420	AISI 420
1	525.4	Spacer sleeve	-	AISI 420
1	526	Centering sleeve	Steel	-
1	562.5	Cylindrical pin	-	SAE 1045
1	562.6	Cylindrical pin	-	SAE 1045
1	562.7	Cylindrical pin	-	SAE 1045
1	623.1	Shaft position indicator	Brass	Brass
1	624	Pin wear indicator	SAE 1020	SAE 1020
1	642.2	Oil level sight glass	Brass/Glass	-
1	913	Venting device	Aluminum	Aluminum
8	900.3	Screw	SAE 1045	SAE 1045
8	901.2	Hexagon head bolt	SAE 1045	-
4	902.5	Stud	-	SAE 1045
1	903.9	Screwed plug	-	Steel
8	914.5	Socket head cap screw	SAE 1045	SAE 1045
4	920.8	Nut	-	SAE 1045
4	920.9	Nut	-	SAE 1045
1	932.2	Circlip	-	Spring Steel
1	940.8	Кеу	-	SAE 1045
1	940.11	Кеу	SAE 1045	
8	950	Spring	Spring Steel	Spring Steel

For pressure segment bearings 2 parts
 Recommended spare parts

13A Oil outlet 13E Oil inlet

Table 6 – Materials list for lift-off device

13.1.1 Lubrication types

10.5.3.1 Execution with plain bearings = lubrication with oil ring or forced feed lubrication

For bearings with forced feed lubrication it is recommended to change the oil every 8000 hours of operation or after maximum two years. For plain bearing and oil ring it is recommended to carry out first oil change after 500 hours of operation, and the next oil changes after 8000 hours or within maximum 1 year.

The oil control in the reservoir or the strainer control of the lube oil system must be performed monthly.

Figure 25 and table 7 show the size and the position of the connections of the plain bearing housing.

In case of pump driven by steam turbine, a lube oil system only for the turbine must be provided separately, which includes an oil reservoir and gear pump driven by electric motor, with heat exchanger, oil filter, internal piping, pressure switches, accessories and instrumentation.

In case of pump driven by electric motor, a lube oil system only for the turbine must be provided separately, which includes an oil reservoir and gear pump driven by electric motor, with heat exchanger, oil filter, internal piping, pressure switches, accessories and instrumentation. The lube oil system installation is set to turn on the main electric motor with the pressure switch right after the oil pump motor starts to operate.

Figure 25 – Connections

Pump Size		Oil		Connection for	Vent plug cover	Dripping outlet	
	Inlet Outlet 13E 13A		Drain 13B	4M	130	00	
40	R ¼"	R ¾"	R 1⁄2"	R ³ / ₈ "	R ½"	R 1⁄2"	
50	R ¼"	R ¾"	R 1⁄2"	R ³ / ₈ "	R ½"	R 1⁄2"	
65	R ¼"	R ¾"	R 1⁄2"	R ³ / ₈ "	R ½"	R 1⁄2"	
80	R ¼"	R ¾"	R 1⁄2"	R ³ / ₈ "	R ½"	R 1⁄2"	
100	R ³ / ₈ "	R ¾"	R 1⁄2"	R ³ / ₈ "	R ½"	R 1⁄2"	
125	R ³ / ₈ "	R 1"	R 1⁄2"	R ³ / ₈ "	R ½"	R 1⁄2"	
150	R ³ / ₈ "	R 1"	R 1⁄2"	R ³ / ₈ "	R ½"	R ¾"	

Table 7 – Connections for lube oil system for bearing housing of plain bearings housing

Figure 26 – Lube oil system (example)

	Oil flow consumption in l/sec										
Pump Size	Without lift-off device	With lift-off device									
40, 50, 65 and 80	0.083	0.166									
100, 125 and 150	0.166	0.333									

Table 8 – Oil distribution according to pump size and execution

Figure 27 – Lube oil system at the side of the pump for pump lubrication only

Figure 28 – Lube oil system behind the pump, for lubrication of the pump bearings, or gearbox or electric motor

Pump Size	For maximum oil flow	Connections for oil piping	Connections for oil return piping
	consumption	PN 6 ①	PN 6 ②
40 e 50	0.133 l/sec	R ¾"	R 2"
65 e 80	0.150 l/sec	R ¾"	R 2"
100	0.200 l/sec	R 1"	R 2"
125	0.266 l/sec	R 1"	R 2"
150	0.300 l/sec	R 1"	R 2"

① The numbers 1 and 2 refer to positions of the connections shown on Figures 29 and 30.

Table 9 – Oil piping

10.6 Shaft sealing

10.6.1 Gland packing

The standard material for gland packing material for hot water is PTFE with graphite. Rings number is 4 on each side. The gland packing leakage shall be of approximately 10 to 20 ml/min, depending on sealing conditions.

Figure 29 – Standard execution with gland packing (from -50°C to 105°C)

Figure 30 – Standard execution with gland packing (from 105°C up to 150°C)

Figure 31 – Gland packing execution w/ cooling for temperatures $\ge 150^{\circ}C$

Pump Size	Seal chamber	Gland p	acking rings	Length			
i unp oize	dimensions (mm)	Quantity	mm	per ring (mm)	total (mm)		
40 e 50	Ø 45/ 65 x 45	4	10	180	720		
65 e 80	Ø 66/ 90 x 50	4	12	250	1000		
100	Ø 70/ 95 x 50	4	12	265	1060		
125	Ø 91/ 115 x 53	4	12	330	1320		
150	Ø 101/ 125 x 53	4	12	365	1460		

Table 10 – Seal chamber and gland packing dimensions

Gland packing friction losses

The gland packing losses are determined by the acceleration power shown on Figure 32.

Caution: For other speeds the losses are calculated according to the speed ratio.

10.6.2 Mechanical Seal

The shaft sealing by mechanical seal and sealing plan shall be agreed between KSB, the customer and the seal supplier.

As a reference, the table below indicates its common applications:

Pumped medium	Temperature	Seal plan	Seal type			
Water	165°C	23	EU5VV			
Water	122ºC	02	01-H75G115 BdB			
Water	140°C	54	J.C. SB2A			

Table 11

Cooling

10.6.3 Shaft sealing by gland packing

Clean water is required for gland packing cooling. It shall not contain solids that may cause pipe clogging with time, for example: condensate.

Legend:

Open system

Pump Size	Stop valve	Collecting container
	 internal thread 	of waste water
40	R1"	R1"
50	R1"	R1"
65	R1¼"	R1"
80	R1¼"	R2"
100	R1¼"	R2"
125	R1½"	R3"
150	R1½"	R3"

Closed system

Pump Size	Stop valve 1) internal thread	Collecting container 2) of waste water
40	R1"	R1"
50	R1"	R1"
65	R1¼"	R1"
80	R1¼"	R1"
100	R1¼"	R1"
125	R1½"	R1"
150	R1½"	R1"

Table 12 – Connections for cooling

10.7.1.1 Pumped medium temperature between 106 to 150°C

OPEN SYSTEM

CLOSED SYSTEM

Figure 33 – Stuffing box cooling

10.7.2 Shaft sealing by Mechanical Seal

The required and suitable cooling must be agreed between KSB, the customer and the seal supplier. There are the following cooling arrangements as a reference:

10.7.2.1 With seal flushing plan and without cooler (from -5°C up to +70 °C)

Figure 34 – Cooling with extraction and seal flushing plan

10.7.2.2 Without seal flushing plan and sealing chamber cooling (from 70°C up to 120 °C)

 10.7.2.3 With seal chamber cooling and mechanical seals in parallel (from 121° up to 180 °C)

 OPEN SYSTEM
 CLOSED SYSTEM

Figure 36

29

10.7.2.4 For ambient temperature > 45 °C and pumped medium temperature > 150°C to 180 °C the bearing housings shall be cooled (see Figure 37).

Figure 37

10.7.2.5 With seal flushing plan with one heat exchanger for each mechanical seal and seal chamber cooling at the following temperature conditions:

For HDB 40 up to 100, T = 181 up to 230 °C, See Figure 38 For HDB 125 and 150, T = 181 up to 200 °C, See Figure 38 For ambient temperature > 45 °C the bearing housings shall be cooled. See Figure 39.

The required cooling water flow is indicated on Figure 40. In this diagram the heating of a cooling liquid of $\Delta t = 10$ °C was considered. When the temperature Δt changes, the cooling liquid quantity can be calculated with this formula:

10.Q = effective cooling liquid quantity Δt

Cooling liquid temperature at the outlet shall not exceed 50°C. The values on the diagram shall have an increase of approximately 10% for the gland follower cooling. Add 10% for bearing cooling.

Figure 40 – Cooling liquid

10.8 Heating chamber

Stuffing box, execution with hot water

Figure 41

10.9 Inertia

Figure 43 shows the moment of inertia curve during start-up with closed valve. The moment of inertia during start-up shall be of 10% of the nominal moment of inertia.

C – valve open

Figure 42 - Moment of inertia curve during start-up

10.10Drive

The transmission can be direct with flexible coupling or indirect with gearbox and flexible coupling connected to the electric motor, steam turbine or internal-combustion motor. The power margin shall be 15% for power of up to 50 kW and of 10% for power above 50 KW.

10.11Couplings

Usually flexible couplings with spacer shall be used with HDB pumps. It avoids the need of dismantling the pump or driver from the baseplate to check the bearings or the shaft protection sleeve. Required length for spacer is indicated in Table 13.

Pump Size	Spacer length						
40							
50	140						
65							
80	180						
100							
125	210						
150	250						

Table 13 - Minimum length required for spacer

10.11.1 Coupling guard

Coupling guard size depends on coupling size and shall be fastened on the baseplate.

10.11.2 Baseplates

With robust construction they are usually designed to support the pump and the driver on the same skid. They are designed according to the project.

14 Materials

The standardized materials variants are provided on Table 15, according to the pumped medium type.

14.1 DIRECTIVES FOR MATERIALS SELECTION FOR BOILER FEEDWATER PUMPS

14.1.1 General Rules

- Pressure limit

Above 100 bar at operating point cast chrome steel material shall be used for casing and internal parts (variant 02).

- Speed limit

Up to n = 3600 rpm (for HDB 125 and 150 up to 3000 rpm). For higher speeds, material variant 04 shall be used.

- Water for boiler feed

Water shall be free of abrasive solids.

- pH value

Feedwater with pH values between 7.0 and 10.5 (referring to 20 °C)

- Feedwater temperature

The maximum temperature of feedwater is 230 °C

- Water preparation

There are two processes for feedwater preparation:

- total desalination: demineralized boiler feedwater
- partial desalination: boiler water (prepared with low hardness residue, maximum chlorine content of 150 ppm, sulphate maximum content of 100 ppm).

Remark: The feedwater pumps material for nuclear plants is usually cast chrome steel.

- Oxygen content

The maximum oxygen content shall be is 0,03 ppm O_2 , for continuous operation of 0,02 ppm O_2 , these values shall not be exceeded.

The maximum oxygen content shall be accurately considered for all operating conditions before the pump inlet (start-up and shutdown). Higher oxygen contents are more corrosive, especially for feedwater with partial desalinations.

Maximum dissolv	ed oxygen content	< 0.02 ppm (short time \leq 0.03 ppm)	<0,03 ppm (short time ≤ 0.04 ppm)				
Prepa	aration	Partial desalination	Total desalination				
		Sizes 40 up to 150	Sizes 40 up to 100	Sizes 125 and 150			
	≥ 9.3						
pH for 20 °C	≥ 8.5	01	01	01			
····· • •	≥ 7.0		01	01 or 02			

Table 14 – Materials selection, based on dissolved oxygen concentration

Caution: For unfavorable operation (intermittent, high switching-frequency, etc.) or when the oxygen content and pH-value are not controlled, due to the lack of equipment/instruments, or lack of overview of personnel surveillance, superior material variant must be selected.

Dimension:

1 ppm (part per million) = 1 mg/l (for density = 1)

- Operation type

Intermittent operation (many start-ups), with shutdown during the weekend (risk of oxygen enrichment inside the installations with thermal degassing) and when the unit will operate many times with partial load, there is a risk of erosion-corrosion.

Continuous operation with spare pump to start operation immediately (approximately 1 time/month) is the preferred operation type.

For start-up in new installations the feedwater pumps must be protected against corrosion after a long time without operation (operation disturbances during start-up allow oxygen presence in the system).

"

15 Material Variants

Part	Description	Qty	01	02
106	Suction casing	1	A216 Gr. WCB	A743 CA6NM
107	Pressure casing	1	A216 Gr. WCB	A743 CA6NM
108.1	Stage casing	S-1	A216 Gr. WCB	A743 CA6NM
165	Cooling chamber cover	2	A748CF8M	A743 CA6NM
171.1	Diffuser	S-1	A748CF8M	A743 CA6NM
171.2	Last stage diffuser	1	A743CF8M	A743 CA6NM
210	Shaft 1)	1	SAE 1045/hard chrome	AISI 6F3/ hard chrome
230	Impeller	S-1	A743CF8M	A743 CA6NM
231	Suction impeller	1	A743CF8M	A743 CA6NM
400.1	Gasket	1	Klingersil	Klingersil
400.2	Gasket	2	Klingersil	Klingersil
411.3	Joint ring	2	Cu	Cu
412.1	O' Ring	S	Viton70	Viton70
412.2	O' Ring	1	Viton70	Viton70
412.3	O' Ring	2	Viton70	Viton70
412.4	O' Ring	2	NB80	NB80
412.5	O' Ring	2	Viton70	Viton70
451	Stuffing box housing	2	A216 Gr. WCB	A743 CA6NM
452.1	Gland follower w/o cooling	2	G-CUSN10N	G-CUSN10N
461	Gland packing	2	Teflon with g	raphite
501	Split ring	1	AISI 420	AISI 420
502.1	Casing wear ring / suction stage	1	AISI 420	RWA 350
502.2	Casing wear ring	S-1	AISI 420	RWA 350
504.1	Spacer ring	1	AISI 420	AISI 420
505.1	Loose collar	1	AISI 420	AISI 420
507.1	Thrower	2	AISI 316	AISI 316
512	Wear ring for balance disc and balance disc seat assembly	1	AISI 316	AISI 420
521	Stage sleeve	S-1	AISI 420	
524.1	Shaft protecting sleeve / suction side	1	AISI 420	AISI 420
524.2	Shaft protecting sleeve / pressure side	1	AISI 420	AISI 420
525.1 ²⁾	Spacer sleeve / suction side	1	AISI 420	1.4024.09
525.2	Spacer sleeve / pressure side	1	AISI 420	1.4024.09
550.1	Washer	16	SAE 1045	SAE 4140
601	Balance disc	1	1.4024.09	1.4024.09
602	Balance disc seat	1	RWA 350	RWA 350
680	Guard	1	SAE 1020	SAE 1020
702	Balance line piping	1	Steel	Steel
902.1	Stud	16	SAE 1045	SAE 1045
902.2	Stud	4	AISI 316	AISI 316
905	Tie bolt	8	SAE 4140	1.6772 (Monix 3K)
914.1	Hexagon head cap screw	8	AISI 316	AISI 316
920.1	Nut	16	1.7709.05	1.7709.05
920.2	Nut	16	SAE 1020/6	A194 GR.2H
920.3	Nut	4	AISI 304	AISI 304
932.3	Circlip	2	Spring Steel	Spring Steel
1) = Cheo	k P/n. If required, use other material		= Recommended spare parts	S = no. of stages

1) = Check P/n. If required, use other material 2) = It does not apply to sizes 125 and 150

= Recommended spare parts

S = no. of stages

Table 15 - Material variants

15.1 Clearances

Indications about output and manometric height referring to characteristic curves concern a clearance between rotor and wear ring equal to 0.3 mm (material variant 01).

Chrome-steel wear rings (material variant 02) require a clearance increase to 0.4mm, and output reduction (η):

- HDB 40 up to 80: -2%
- HDB 100 up to 150: -1%

16 Forces and Moments

Piping forces and moments shall not overload the pump. When required on specific cases a pre-calculation has to made for all forces and moments and its possible combinations, which shall meet the following formula:

¢

$$\sqrt{(3F_x)^2 + (F_y)^2 + (3F_z)^2} + \underbrace{0.3}{D} \sqrt{(1,3Mx)^2 + (2My)^2 + (2Mz)^2} \begin{cases} \leq 400.000.D \text{ (DN} \leq 80) \\ \leq 320.000.D \text{ (DN} \geq 100) \end{cases}$$

Dimensions: F in N M in Nm D in m

Remark: Forces and moments may simultaneously load suction flange and pressure flange.

Size	40	50	65	80	100	125	150	
Suction flang	je							
Fx	1500	2000	2500	3000	3500	4000	5000	
Fy	2500	4000	7000	10000	14000	16000	17000	
Fz	1500	2000	2500	3000	3500	4000	5000	
Mx	750	1200	1500	2000	5000	6000	6000	
Му	750	1200	1200	1200	1500	2500	3000	
Mz	750	1200	1500	1800	800 2400		4000	
Delivery flan	ge							
Fx	1000	1500	2000	2500	3000	3500	4000	
Fy	2000	2500	4000	7000	10000	14000	16000	
Fz	1000	1500	2000	2500	3000	3500	4000	
Mx	500	750	1200	1500	2000	5000	6000	
Му	500	750	1200	1200	1200	1500	2500	
Mz	500	750	1200	1500	1800	2400	3500	

Figure 43 – Forces and moments on pump flanges

Letter F indicates the direction of the forces and letter M indicates the direction of the moments of inertia, and letter D indicates the suction and discharge flanges diameter.

It is not recommended to fasten pump after heating the connections and pipes, as this may cause vibrations and high wear on the pump and coupling wear. The pump positioning and fastening of the pump and its accessories with pins shall only be made in cold condition as shown on Figure 44.

Figure 44 – Pump fastening to the baseplate by pins

13.1. Center of gravity position

The pump center of center position is approximately at the half of the pump.

17 Spare parts

Recommended spare parts are indicated on the materials variants table.

18 Dimensions

Sizes 40 thru 100

Sizes 125 and 150

Execution with one key Sizes 40 thru 100

Execution with two keys Sizes 125 and 150

Sizes 125 and 150

KSB HDB

dimensions in mm

	5 0	e a	Pum	o dime	ensions	S																		
ump size	Suction	Pressul flange				e (fo	(for each stage)																	
ш	DN_1	DN_2	b ₁	b ₂	d ₂	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	f	h ₁	h ₂	h ₃
40	50	40	65	40	23			283	331	379	427	475	523	571	619	667	715	763	811	859	400	275	275	
50	65	50	70	40	23		256	308	360	412	464	516	568	620	672	724	776	828			405	305	315	
65	80	65	75	40	26		300	360	420	480	540	600	660	720	780	840	900	960			460	340	350	
80	100	80	80	40	26		315	380	445	510	575	640	705	770	835	900		-			465	375	400	-
80	125	80	80	40	26		345	410	475	540	605	670	735	800	865	930		-			495	375	400	-
100	125	100	110	40	33		364	434	504	574	644	714	784	854			1	-			510	425	465	-
100	150	100	110	40	33		364	434	504	574	644	714	784	854			-				510	425	465	
125	150	125	110	40	36	405	510	615	720	825	930	1035	1140								615	415	525	35
150	200	150	125	40	36	470	595	720	845	970	1095										645	460	575	40

Table 16

e	Dimensions Shaft end											Connections								
p Siz										Stuffing box	Stuffing box	Balance	Oil under pressure							
mn	i ₁	i ₂	I_3	I ₄ ¹⁾	I_5	m	n ₁	n ₂	s	u	b ₃	d ₁ me	h4	I_1	I_2	cooling	urain	outlet	inlet	outlet
ш.													7A/7E	8B	14A	13E	13A			
40	12	16	375	484	130	65	480	410	60	5	10	34	37,3	80	70	R3/8	R1/2	R1/2	R1/4	R3/4
50	10	17	380	489	130	65	540	470	60	5	10	34	37,3	80	70	R3/8	R1/2	R3/4	R1/4	R3/4
65	22	27	435	611	130	70	600	520	70	5	12	44	47,1	110	90	R1/2	R1/2	R3/4	R1/4	R3/4
80	25	35	460	636	130	75	660	580	70	5	12	44	47,1	110	90	R1/2	R1/2	R1	R1/4	R3/4
80	25	35	460	636	130	75	660	580	70	5	12	44	47,1	110	90	R1/2	R1/2	R1	R1/4	R3/4
100	40	45	475	654	130	100	800	700	80	5	14	48	51,5	120	110	R1/2	R1/2	R1	R3/8	R3/4
100	40	45	475	654	130	100	800	700	80	5	14	48	51,5	120	110	R1/2	R1/2	R1	R3/8	R3/4
125	25	25	495	650	130	105	920	850	70	5	18	64	72	140	130	R3/4	R1/2	R1	R3/8	R1
150	25	25	530	695	130	110	1060	950	80	5	20	74	83	140	130	R3/4	R3/4	R1 1/4	R3/8	R1

1) With lift-off device

Table 17

19 Cross sectional drawing and Parts List

19.1 Sizes 40 and 50

38

KSB HDB

19.2 Sizes 65, 80 and 100

19.3 Sizes 125 and 150

<u>Part no.</u>	Description	Part no.	Description
106	Suction casing	52-1	Fastening bush
107	Pressure casing	524.1	Shaft protection sleeve
108.1	Stage casing	524.2	Shaft protection sleeve
108.2	Stage casing with extraction	525.1	Spacer sleeve on suction side ①
108.3	Stage casing with extraction	525.2	Spacer sleeve on pressure side
165	Cooling chamber cover	541	Stage sleeve
171.1	Diffuser	54-1	Blind stage sleeve
171.2	Last stage diffuser	550.1	Washer
210	Shaft	550.2	Washer
230	Impeller	560.2	Tapered pin
231	1 st stage impeller ③	562.3	Cylindrical pin
322	Radial roller bearing	562.4	Cylindrical pin
350.1	Bearing housing	562.11	Cylindrical pin
360	Bearing cover	571	Clamp
361	Bearing end cover	601	Balance disc
370.1	Bearing shell	602	Balance disc seat
370.2	Bearing shell	623.1	Shaft position indicator
370	Bearing shell ①	624	Pin wear indicator
400.1	Gasket	638	Constant level oiler
400.2	Gasket	644	Oil ring
400.3	Gasket ①	680	Guard
412.1	O 'ring ①	731.8	Pipe union
412.2	O 'ring	901.2	Hexagon head bolt
412.3	O 'ring	902.1	Stud
412.4	O 'ring	902.2	Stud
412.5	O 'ring	903.3	Plua
412.8	O 'ring	903.6	Plug
412.9	O 'ring ③	905	Tie bolt
422.1	Felt ring	913	Vent plug cover
423	Labyrinth ring	914.1	Socket head cap screw
451	Stuffing box housing	914.2	Socket head cap screw
452.1	Gland follower	920.1	Hexagon nut
461	Gland packing	920.2	Hexagon nut
500.1	Ring	920.3	Hexagon nut
500.2	Ring	920.6	Hexagon nut
501	Split ring @	921.1	Shaft nut @
502.1	Casing wear ring ③	921.2	Shaft nut ②
502.2	Casing wear ring	932.3	Circlip
503.1	Impeller wear ring 3	940.1	Key for coupling
503.2	Impeller wear ring	940.2	Key for impeller
504.1	Spacer ring ②	940.3	Key for 1st stage impeller
505.1	Loose collar@	940.4	Key for last stage impeller
507.1	Thrower	940.5	Key for balance disc
512	Wear ring for bal. disc and bal. disc seat ass. ①	940.6	Key for shaft protection sleeve, suction side
521	Stage sleeve	940.7	Key for shaft protection sleeve, pressure side
1M	Connection for pressure dauge		
6B	Pump drain		
7A	Cooling liquid outlet / stuffing box outlet		
7E	Cooling liquid inlet / stuffing box inlet		
8B	Bearing housing drain		
13B	Oil outlet	legend:	
14A	Hydraulic balance liquid outlet		① sizes 40 up to 100
4M	Connection for temperature indicator		2 sizes 65 up to 150
8A	Dripping liquid outlet		③ sizes 125 and 150

41

19.4 Special features

19.4.1 Blind stage

In case of future operation with higher pressure than first operating condition, one or more impellers will be replaced by blind stage spacer sleeve and blind stage sleeve. The impellers required for the future operation will be supplied with the pump.

PART N°	DESCRIPTION
525.5	SPACER SLEEVE
54-1	BLIND STAGE BUSHING

Figure 49 – Blind stage

19.4.2 Stage casing with extraction

When a lower pressure is required at the same time of the pump final pressure (for example, for injection inside an intermediate heat exchanger) stage casings with a connection for extraction can be supplied.

Figure 50 – Stage casing with threaded and welded extraction

Figure 51 – Stage casing with cast extraction

Dump Sizo	Threaded and welded extraction		Cast extraction		
Fullip Size	DN	Maximum partial flow Q (I/s)	DN	Maximum partial flow Q (I/s)	
40	40 15 1.4		40	10	
50 15		1.4 50		15.5	
65	25	4	65	26	
00	25	4	80	40	
00	-	-	40	10	
100	25	4	100	60	
100	-	-	40	10	
125	25	4	50	15.5	
150	25	4	50	15.5	

Table 18 – Technical data for Figures 50 and 51

16.4.2.1 Material variants for threaded and welded extraction

HDB 40	Stage casing (material)	Extraction (material)
up to	A216 Gr. WCB	SAE 1020
150	A743 CA6NM	AISI 420

Table 19 -	- Materials	for stage	housing	with extraction

16.4.3 Gear pump assembled on the pump shaft

Gear pump is used on pumps with lift-off device and forced feed lubrication. It is driven by a gear set assembled on the pump main shaft.

The purpose of the gear pump is to supply pressurized oil to the main bearings without continuous use of the lube oil system, saving energy and assuring suitable lubrication.

Figure 52 – Gear pump

Table 20 – Gear pump parts list

16.4.4 Minimum flow valve installation

Minimum flow can be maintained by a minimum flow valve installed at the discharge piping. The selection of this valve shall be made on a case by case basis.

16.4.5 Strainers

Strainers are frequently necessary to protect the pump from impurities on the installation and to protect the clearances between the stationary and rotating pump components against contamination.

A strainer is especially important if the vessels and pipes were not completely picked and blown during the commissioning of new installations. Besides that the welding residue, scrubs or similar impurities often appear after some period of time after maintenance or repair.

The strainers can be installed on the suction piping, on horizontal or vertical position, at the nearest possible location to the pump nozzles as preferred position.

It is recommended to install temporary strainers inside the suction piping.

Figure 53 - Single and Double strainer

Figure 54 - Example of horizontal installation

A threaded connection on the upstream and downstream piping of the suction strainer filter assembly should be provided for differential pressure monitoring

Figure 55 – Suction strainer with monitoring

16.4.6 Special tools

Figure 56 – Special too for coupling removal

Figure 57 – Special tool for balance disc removal

Description Shaft protection sleeve Balance disc

Figure 58 – Special tool for shaft protection sleeve

16.4.7 Tools

Pump Size	Closed-end wrench (N 85) DN	Ring wrench (N 89) DN	Allen Wrench (DIN 911)	Beating star wrench (ZN 7444)	Pliers for safety rings (DIN 5254)
40	46	41	6	41	
50	46	46	6	46	
65		50	6 e 8	50	
80		60	6 e 8	60	
100		70	6 e 10	70	
125		80	8 e 10	80	A40 and C40
150		90	8 e 14	90	A40 and C40

Table 21 – Tools

17 Characteristic curves

See characteristic curves catalog A1826.4P.

07/05/2018

KSB Brasil Ltda. Rua José Rabello Portella, 400 Várzea Paulista SP 13220-540 - Brazil <u>http://www.ksb.com.br</u> Phone: +55 11 4596 8500 SAK – KSB Customer Service e-mail: <u>sak@ksb.com</u>